Skip to main content
Log in

An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form v t = v x v y - x -1 y [v y + v x 2], where the formal integral x −1 becomes the asymmetric integral \( - \int_x^\infty {dx'} \) . We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X, Y) over a parabola in the plane (X, Y) can be expressed in terms of the integrals of f(X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Manakov and P. M. Santini, J. Phys.: Conf. Ser., 482, 012029; arXiv:1312.2740v1 [nlin.SI] (2013).

    ADS  Google Scholar 

  2. S. V. Manakov and P. M. Santini, “Inverse scattering problem for vector fields and the heavenly equation,” arXiv:nlin/0512043v1 (2005).

    MATH  Google Scholar 

  3. S. V. Manakov and P. M. Santini, Phys. Lett. A, 359, 613–619 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. V. Manakov and P. M. Santini, JETP Letters, 83, 462–466 (2006).

    Article  Google Scholar 

  5. S. V. Manakov and P. M. Santini, Theor. Math. Phys., 152, 1004–1011 (2007).

    Article  MathSciNet  Google Scholar 

  6. S. V. Manakov and P. M. Santini, J. Phys. A: Math. Theor., 41, 055204 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. V. Manakov and P. M. Santini, J. Phys. A: Math. Theor., 42, 095203 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. G. Grinevich, P. M. Santini, and D. Wu, Nonlinearity, 28, 3709–3754 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. V. Pavlov, J. Math. Phys., 44, 4134–4156 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  10. E. V. Ferapontov and K. R. Khusnutdinova, Commun. Math. Phys., 248, 187–206 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Dunajski, J. Geom. Phys., 51, 126–137 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Dunajski, “The nonlinear graviton as an integrable system,” Doctoral dissertation, Univ. of Oxford, Oxford (1998).

    Google Scholar 

  13. P. G. Grinevich and P. M. Santini, Stud. Appl. Math., 137, 10–27 (2016); arXiv:1507.08205v1 [nlin.SI] (2015).

    Article  MathSciNet  Google Scholar 

  14. B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl., 15, 539–541 (1970).

    ADS  Google Scholar 

  15. C. C. Lin, E. Reissner, and H. S. Tien, J. Math. Phys., 27, 220–231 (1948).

    Article  Google Scholar 

  16. R. Timman, “Unsteady motion in transonic flow,” in: Symposium Transsonicum (International Union of Theoretical and Applied Mechanics (IUTAM), Aachen, 3–7 September 1962, K. Oswatitsch, ed.), Springer, Berlin (1964), pp. 394–401.

    Chapter  Google Scholar 

  17. E. A. Zobolotskaya and R. V. Khokhlov, Soviet Physics Acoustics, 15, 35–40 (1969).

    Google Scholar 

  18. M. J. Ablowitz and J. Villarroel, Stud. Appl. Math., 85, 195–213 (1991).

    Article  MathSciNet  Google Scholar 

  19. M. Boiti, F. Pempinelli, and A. Pogrebkov, Acta Appl. Math., 39, 175–192 (1995).

    Article  MathSciNet  Google Scholar 

  20. A. S. Fokas and L.-Y. Sung, Math. Proc. Cambridge Phil. Soc., 125, 113–138 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. M. Cormack, J. Appl. Phys., 34, 2722–2727 (1963).

    Article  ADS  Google Scholar 

  22. F. Natterer, The Mathematics of Computerized Tomography (Classics Appl. Math., Vol. 32), SIAM, Philadelphia, Penn. (2001).

    Book  MATH  Google Scholar 

  23. L. Sylow and S. Lie, eds., Oeuvres complètes de Niels Henrik Abel, Johnson Reprint Corp., New York (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Grinevich.

Additional information

The research of P. G. Grinevich was supported in part by the Russian Foundation for Basic Research (Grant No. 13-01-12469 ofi m2), the Program for Supporting Leading Scientific Schools (Grant No. NSh-4833.2014.1), the program “Fundamental problems of nonlinear dynamics” of the Presidium of the Russian Academy of Sciences, the INFN sezione di Roma, and the program PRIN 2010/11 (Program No. JJ4KPA 004 of Roma 3).

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 189, No. 1, pp. 59–68, October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinevich, P.G., Santini, P.M. An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects. Theor Math Phys 189, 1450–1458 (2016). https://doi.org/10.1134/S0040577916100056

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916100056

Keywords

Navigation